General Information
Manufacturer: HP
MPN: QK724A
Spare Part Number: 656435-001
SKU: QK724A
Transceiver Type: SFP+ transceiver module
Form Factor: Plug-in Module
Networking:
Connectivity Technology: WiredCabling Type: Fibre Channel
Data Link Protocol: 16Gb Fibre Channel (SW)
Data Transfer Rate: 14.025 Gbps
Expansion / Connectivity
Interfaces: 1 x 16Gb Fibre Channel (SW) - LCCompatible Slots: 1 x SFP+
Compatibility:
Brocade 16Gb/12 SAN Switch Module for HPE Synergy, 16Gb/16 SAN Switch for HP BladeSystem c-Class, 16Gb/24 Fibre Channel SAN Switch Module for HP Synergy, 16Gb/24 SAN Switch Module Power Pack+ for HPE Synergy, 16Gb/28 SAN Switch for HP BladeSystem c-Class, 16Gb/28 SAN Switch Power Pack+ for BladeSystem c-Class HPE 32-port 16Gb/s Director Blade, 48-port 16Gb/s Director Blade, SAN Director 64-port 8Gb Fibre Channel Blade, SN3000B 16Gb 24-port/12-port Active Fibre Channel Switch, SN3000B 16Gb 24-port/24-port Active Fibre Channel Switch, SN6000B, SN6000B 16Gb 48-port/24-port Active Fibre Channel SwitchSN6000B 16Gb 48-port/24-port Active Power Pack+ Fibre Channel Switch, SN6000B 16Gb 48-port/48-port Active Power Pack+ Fibre Channel Switch, SN8000B 32-port 8Gb/s Director Blade, SN8000B 48-port 8Gb/s Director Blade HPE StoreFabric SN3600B, SN3600B Power Pack+, SN4000B Power Pack+ SAN Extension Switch, SN6500B 16Gb 96-port/48-port Active Fibre Channel Switch, SN6500B 16Gb 96-port/48-port Active Power Pack+ Fibre Channel Switch, SN6500B Power Pack+, SN6600B 32Gb 48/24, SN6600B 32Gb 48/24 Power Pack+, SN6600B 32Gb 48/48, SN6600B 32Gb 48/48 Power Pack+ Fibre Channel Switch, SN6650B, SN6650B Power PAck, SN8000B 4-Slot Power Pack+ SAN Director Switch, SN8000B 8-Slot Power Pack+ SAN Backbone Director Switch, SN8600B 4-slot Power Pack+ Director Switch
Building a fiber-optic network calls for a lot of planning and consideration of many factors. Transceivers are part of the many devices used to build optical fiber systems. A transceiver serves the combined roles of a transmitter and a receiver in that it transmits and receives signals. They are most common in communication equipment such as cellular phones, cordless telephone sets, and radio. Small form factors are required as networks become dense and space is limited, which sees transceivers included in chipsets.
In local area networks (LAN), a transceiver is used to connect a computer to printers and other devices on the network. Usually, the transceiver is integrated into the Network Interface Card (NIC)
Typical Roles of a Transceiver
- Used to convert frequencies from IF to RF.
- Widespread use in wireless communication to transmit data – voice, data, and video.
- RF transceivers are used in communication devices to support radio and TV signal transmission, digital signals transmission, and satellite communication.
- Collision detection – detection of simultaneous signals on the network.
- Transceivers can be deployed to provide a jabber function to interrupt transmission of long data stream outputs.
Look no further for all types of transceivers including fiber optic transceivers, wireless transceivers, Ethernet transceivers, and RF transceivers. All these transceivers have different characteristics and support full-duplex communication, but the principle behind their work remains the same. Different types of transceivers will have varying numbers of ports used in transceiver networking connections.
RF Transceivers: these devices are used to transmit video or voice data over a wireless medium. Commonly used for satellite communication, radio transmission, and ITE/WiMax/WLAN networks. The radio transceiver works by silencing the receiver when it is transmitting. There is an electronic switch that facilitates the connection of both the receiver and transmitter on the same antenna. The switch protects the receiver from damage that may be caused by the transmitter output.
Fiber Optic Transceivers: Also referred to as optical modules or fiber optical transceivers. Used to transmit data in fiber optic technology. The network must also have electronic components to encode or decode data into light signals.
Ethernet Transceivers: Basically used to connect electronic devices in a network so that they are able to transmit and receive data. It is also referred to as a media access unit (MAU). The best application of these transceivers is in the specification of IEEE 802.3 and Ethernet. Ethernet transceivers will detect a collision, provide Ethernet interface processing, convert digital data, and provide access to the network.
Wireless Transceivers: Wireless transceivers are a fundamental component necessary for data delivery in wireless networks. These transceivers have two layers. The physical layer has a baseband processor and RF front end. The processor converts a bitstream to a collection symbol flow for data transmission. The second layer is a MAC layer for link traffic control in contacting wireless links, improving data throughput, and preventing collisions.
We guarantee our customers high quality and reliability for all our transceiver networking solutions, irrespective of the type and size of your network.